
Engineering with Computers (2002) 18: 286–294
Ownership and Copyright
 2002 Springer-Verlag London Limited

On Object-Oriented Frameworks and Coordinate Free Formulations of
PDEs

K. Åhlander1, M. Haveraaen2 and H. Munthe-Kaas2

1Department of Information Technology, University of Uppsala, Uppsala, Sweden;
2Institute of Informatics, University of Bergen, Bergen, Norway

Abstract. An object-oriented (OO) framework for Partial
Differential Equations (PDEs) provides software abstractions
for numerical simulation of PDEs. The design of such frame-
works is not trivial, and the outcome of the design is highly
dependent on which mathematical abstractions one chooses
to support. In this paper, coordinate free abstractions for
PDEs are advocated. The coordinate free formulation of a
PDE hides the underlying coordinate system. Therefore,
software based on these concepts has the prospect of being
more modular, since the PDE formulation is separated from
the representation of the coordinates. Use of coordinate free
methods in two independent OO frameworks are presented,
in order to exemplify the viability of the concepts. The
described applications simulate seismic waves for various
classes of rock models and the incompressible Navier-Stokes
equations on curvi-linear grids, respectively. In both cases,
the possibility to express the equations in a domain inde-
pendent fashion is crucial. Similarities and differences
between the two coordinate free frameworks are discussed.
A number of places where such frameworks should be
designed for modification is identified. This identification is
of interest both for framework developers and for tentative
framework users.

Keywords. Computations on manifolds; Coordinate
free numerics; Object-oriented frameworks; Partial
differential equations

1. Introduction

The numerical solution of Partial Differential Equa-
tions (PDEs) is a major part of the solution process
for many engineering problems. Many, often con-
flicting, demands are put on PDE simulation
software. The software must be easy to use, fast,
flexible, reliable, etc. It is unlikely that we will

Correspondence and offprint requests to: K Ahlander, Dept of
Information Technology, University of Uppsala, Box 337, SE-
75105 Uppsala, Sweden. E-mail: krister@tdb.uu.se

obtain one simulation package ideal for all different
kinds of PDEs, but there exist several projects with
the aim of providing simulation capabilities to a
large set of PDE problems, for instance Cogito [1],
Diffpack [2], Overture [3], Pooma [4] and Pellpack
[5]. The simulation capabilities are usually provided
via an Object-Oriented (OO) framework, understood
as a collection of related classes that may be com-
bined to solve a particular problem [6].

However, the design of OO frameworks for PDEs
is not a trivial problem, and there are many issues
where different approaches yield different solutions.
In this paper, we discuss one of the most basic
questions regarding the design of PDE simulation
software: Which mathematical abstractions shall be
the foundation for an OO PDE framework?

Traditionally, applied mathematicians have started
program development from a given PDE in compo-
nent form. This formulation contains implicit infor-
mation, for instance regarding the coordinate system.
The component form may also be based upon vari-
ous simplifications, which are then implicitly hidden
in the equations. As a consequence, it may be
difficult to change coordinate systems or to model
the same PDE under circumstances where the orig-
inal simplifications can not be applied [7].

We argue that it is important to base the software
abstractions on the original, coordinate free formu-
lation of the PDE. This formulation captures the
essence of the PDE and is therefore more robust.
The choice of coordinate system, as well as the
introduction of various simplifications, then enter
into software design in a later stage of the analysis
process. Examples of when this principle shows its
strength with respect to code are:

� When the physics suggests a particular coordinate
system. One example is when cylindrical coordi-
nates simplify problems with a rotational sym-
metry.

287On OO Frameworks and Coordinate Free Formulations of PDEs

� When the numerical method maps the compu-
tational grid to the actual geometry. This situation
is typical when finite differences are used to
simulate PDEs that are expressed on curvi-linear
grids.

In this paper we concentrate on coordinate free
abstractions for space operations, such as spatial
derivations and spatial integration. In non-relativistic
engineering applications we may consider the com-
putational domain as factorized in a product of a
time direction and space directions, which may be
treated independently of each other. The time step-
ping procedures we employ in the examples are
simple traditional coordinate based algorithms, such
as Euler updates and leapfrog. It should be noted
that during the recent years a substantial effort
has been done in understanding also time stepping
algorithms in a coordinate free framework. These
algorithms are based on (coordinate free) Lie group
actions as the basis for updating the numerical sol-
ution in time. We refer the readers elsewhere [8, 9]
and the references therein for an extensive dis-
cussion of this topic.

The outline of this paper is as follows. In Section
2, we motivate the coordinate free approach. In
Section 3, we discuss some main abstractions for a
coordinate free approach. In Section 4, we present
two sample PDE problems from different areas,
where a coordinate free approach has been ben-
eficial, and we relate the coordinate free abstractions
to the setting of OO frameworks. In Section 5, we
summarize our findings.

2. Component Form versus
Coordinate Free Form

In this section, we highlight the difference between
the component form and the coordinate free form
of a PDE, and we show what this difference implies
for the PDE software design. As an illuminating
example, we use a simple heat equation:

ut = c �u. (1)

Here, u is the temperature, c is a given coefficient,
and the derivatives ut and �u denote time derivative
and Laplacian spatial derivative1 of the temperature,
respectively. In this simplified example, we assume
that appropriate initial conditions and boundary con-

1 Sometimes, the notation �2 is used for the Laplacian. The
notation � is chosen to obtain a clearer notation later when
software is discussed.

ditions are given, and we focus on how the equation
may be solved in various geometries. First, we
consider geometries according to Fig. 1.

To solve (1) on a three-dimensional cube (Fig.
1a), it is convenient to write the equation in compo-
nent form as

ut = c(uxx + uyy + uzz), (2)

where uxx denotes second derivative wrt x etc. This
example problem is readily solved. However, if the
problem is such that the values are independent of
z, it may be modeled in two dimensions (Fig. 1b),
and we simplify the equation:

ut = c(uxx + uyy). (3)

If we, in our example, use finite differences in order
to discretize in space, it is trivial to solve either of
the Eqs (2) and (3). However, when comparing Eqs
(2) and (3), we notice that the same equation actu-
ally is written in two different ways, depending
basically on the choice of coordinate system. This
is a significant disadvantage of the component form.
Therefore, it is better if the numerical simulation is
based directly upon equation (1), which is the coor-
dinate free formulation. The computations of the
Laplacian will still, of course, be carried out in
different ways, but this can be hidden from the
equation by having a coordinate free interface to
the field u. The advantage of a coordinate free
interface is even more significant if we consider a
curvi-linear grid, see Fig. 1c. Let x and y be mapped
from a logically rectangular grid (cf. Fig. 3) with
coordinates r and s:

x = x(r, s)
y = y(r, s),

and denote the inverse mappings as

r = r(x, y)
s = s(x, y),

The computations of the Laplacian may still use
finite differences, but one must take the chain rule
into account. Equation (3) becomes

ut = c((r2
x + r2

y)urr

+ 2(rxsx + rysy)urs + (s2
x + s2

y)uss (4)

+ (rxx + ryy)ur + (sxx + syy)us),

where rx denote the partial derivative of r with
respect to x, etc. When doing simulations on a
curvi-linear grid, the component form of the PDE
quickly becomes impractical. As yet another compli-
cation, consider a geometry which is covered by a

288 K. Åhlander, M. Haveraaen and H. Munthe-Kaas

Fig. 1. Sample geometries where a PDE can be simulated: (a) a 3D cube, (b) a 2D square, (c) a curvi-linear grid, and (d) a composite grid.

composite grid (see Fig. 1d). Here, it is natural
to use Eq. (3) on one grid and Eq. (4) on the
other grid.

Summarizing our example so far, we have shown
how the component form of a PDE is sensitive to the
choice of coordinate system. The desired situation is
to have programming abstractions that provide a
coordinate free interface. We would like to be able
to express the right hand side of Eq. (1) directly in
terms of programming abstractions. If u is a
Scalar Field, it should be possible to simulate
Eq. (1) with for instance a Forward Euler step (with
time step dt), using code similar to:

u = u + dt*c*u.Laplacian();

Such a coordinate free interface on curvi-linear grids
is actually provided by for instance Overture [3].
Overture embeds a composite overlapping grid with
different local coordinate systems into one global
coordinate system. It is therefore possible to use
partial differential operators like �/�xx and �/�yy inde-
pendently of the underlying curvilinearity of the
manifold. Compound operators like the Laplacian
are also available. Overture is discussed further
below in Section 4.2. However, a coordinate free
interface may be used not only for curvi-linear grids.
Consider the geometry of Fig. 2. This shape has
a rotational symmetry, and we may simplify the
computations using cylindrical coordinates (�, �, z).
In cylindrical coordinates, �u reads

Fig. 2. A rotational shape may be modeled in two dimensions,
since everything is constant when the angle changes.

�u = u�� +
1
�

u� +
1
�2 u�� + uzz.

In the case of rotational symmetry, u�� vanishes. We
refer to a coordinate free interface which provides
coordinate free implementations in this more general
sense for coordinate freeness at the tensor level.
Our previous examples with curvi-linear grids have
been geared towards finite differences, but the
advantages of a coordinate free interface at the
tensor level are applicable to other discretization
methods as well. The architecture of Sophus [10]
has been designed with a coordinate free interface

289On OO Frameworks and Coordinate Free Formulations of PDEs

at the tensor level in mind and it allows us to
transparantly handle for instance rotational sym-
metries. In Grant et al. [11], finite elements are used
to simulate a wire coating problem with rotational
symmetry. Sophus is discussed in more detail in
Section 4.1.

3. Abstractions

In this section, we discuss a few main abstractions
for coordinate free PDE simulation software. We
emphasize the variation points a coordinate free
framework should support, both with respect to
domain abstractions and coordinate free abstractions
on a higher abstraction level. Variation points are
places where a framework is designed for modifi-
cation.

3.1 Domain Abstractions

Coordinate free domain abstractions are perhaps best
illustrated by curvi-linear grids which are often used
for finite differences. However, the concepts dis-
cussed in this section may be applied whenever the
manifold in which the PDE evolves, the physical
domain, differs from the computational domain.

A manifold is the mathematical domain needed
for differentiation. The simplest example is an open
rectangular subset of �n. The computational domain
is the manifold where the numerical approximations
to the differentiations actually are carried out.

It is often advantageous to use a computational
domain which differs from the physical domain, for
symmetry reasons (coordinate free tensor level) or
for modeling geometry (coordinate free curvi-linear
level). The change of coordinates depend on a map-
ping x→ = x→(r→) and its inverse mapping r→ = r→(x→) from
the computational domain r→ = (r,s, %), to the physi-
cal domain x

→ = (x,y, %), see Fig. 3. A given
manifold can, in general, not be covered with one
single mapping (a chart) from Cartesian space. In

Fig. 3. A mapping (a chart) from a Cartesian space to a physi-
cal manifold.

pure mathematics, this complication arises in con-
junction with the definition of an analytical mani-
fold. The complication is handled (see e.g. Schutz
[12]) by introducing an ‘atlas’ of consistently over-
lapping local charts over the manifold (see Fig. 4).

Here, we find it interesting to note the similarities
between the concepts of pure mathematics and over-
lapping composite grids. Overlapping composite
grids are used in the finite difference community to
handle complex computational domains (cf. Figure
1d). As an example, we refer to the design of
computational domains in Overture. Here, the object
model is similar to the UML [13] diagram in Fig.
5. The computational domain, a composite grid,
consists of several curvi-linear grids, each associated
with a mapping. In Overture, Mapping is an
abstract base class. Various subclasses are provided
which cater for different common mappings. The
ability to handle various mappings is an important
variation point.

Besides the mappings themselves, derivatives of
the mappings are required (at every point of the
domain), cf. Eq. (4). In software, one has a choice
between precomputing these values and computing
them on demand. In some cases, the derivatives
are known analytically, for instance for cylindrical
coordinates, but for other mappings numerical
approximations of appropriate accuracy must be per-
formed. In the context of a coordinate free frame-
work, it should be possible to experiment with
these choices, since it often is impossible to know
beforehand which strategy is the most efficient for
a given physical problem on a given platform.

3.2 Coordinate Free Abstractions and
Operations

Now, we draw our attention to coordinate free
abstractions and operations. We focus on explicit
computations and we will use the gradient, �, and

Fig. 4. If the manifold can not be covered with one single
mapping, several mappings can be used to create an ‘atlas’ over
the manifold.

290 K. Åhlander, M. Haveraaen and H. Munthe-Kaas

Fig. 5. A UML diagram associating grids and mappings in Overture. A composite grid consists of (the diamond symbol) several (the *
symbol) Mapped Grids, each associated with a single mapping.

the Laplacian, �, as examples. Other differentiation
operations can be treated in a similar fashion.

The Laplacian is a mapping from a scalar field
to a scalar field, and the gradient is a mapping from
a scalar field to a vector field. We may formalize
this as

� : Scalar Field → Scalar Field
� : Scalar Field → Vector Field.

Both scalar fields and vector fields are coordinate
free mathematical objects. However, we believe that
it is beneficial for software to address the more
general notion of tensor fields (cf. [7]). A scalar
field is then a tensor field of rank 0 and a vector
field is a tensor field of rank 1.

Note that both these operations need knowledge
about the dimension of the underlying manifold.
The gradient operator must know this because, of
course, the Vector Field has as many compo-
nents as the dimension of the manifold. But also the
Laplacian needs the dimension information. When
analyzing the computations of various derivatives,
one identifies (in 2D and 3D) four different cases:

1. Cartesian 2D
2. Curvi-linear 2D
3. Cartesian 3D
4. Curvi-linear 3D

In terms of software design, we are aware of two
approaches to handling these different cases. The
first is when the tensor field itself has operations
that carry out these operations. If the coordinate
system changes, the tensor field module can be
replaced, so that the correct formula is used. This
approach is used in Sophus. Note that these formulas
depend only on continuous abstractions. This implies
that the tensor field abstraction should not deal with
discrete approximations. The discrete approximations
are carried out by another module, PD Scalar
Field, where the partial derivatives in the compu-
tational coordinates are approximated.

The second approach, which is used in Overture,
uses an auxiliary class (Operators) to do numeri-
cal differentiation. The separation between the rep-
resentation of tensor fields and the derivative compu-
tations is then increased. The separation of concerns
between continuous and discrete differentiation is,
however, not acknowledged, and we believe that a

combination of both approaches would yield a more
flexible framework. Besides the variation of the
Operators module, different curvi-linear map-
pings may be varied through the use of different
Mappings, as discussed above.

Sometimes it is desirable to represent a discretiz-
ation operator as a discrete operator, for instance, if
Poisson’s equation �p = f is to be discretized as
M P = F, where P and F are discrete representations
of p and f, respectively, and the (usually sparse)
matrix M is a discrete representation of �. Again,
we stress that the construction of discrete operators
of this kind should be based on coordinate free
abstractions. For the Laplacian, we can construct
the matrix given a domain:

createMatrix�: Domain → Matrix.

On a curvi-linear domain, the derivatives of the
mapping are used to adjust the matrix entries. Our
discussions above on variation points for coordinate
free abstractions apply in this case as well. Overture
supports the construction of discrete differentiation
operators in a fashion similar to above. We finally
note that our discussions on coordinate free abstrac-
tions are not restricted to finite differences. Overture
provides operators for finite volumes as well. Finite
elements have been used in Sophus [11], and work
on finite volume methods is in progress. For these
methods, weak formulations of the PDEs is used.

4. Coordinate Free Framework
Examples

Previously, we have used trivial model problems to
illustrate coordinate free concepts. In this section, we
discuss coordinate free numerics for more realistic
problems, in connection with existing OO frame-
works. In Section 4.1, a seismic simulation carried
out with the Sophus framework is presented. This
application is described in detail in Haveraaen et al.
[10]. In Section 4.2, we present simulations of the
incompressible Navier-Stokes equations for fluid
motion. This is done using the Compose framework
which is based on Overture. See Åhlander [14,15]
for more details on Compose and this particular
application. In Section 4.3, we comment on simi-

291On OO Frameworks and Coordinate Free Formulations of PDEs

larities and differences between the two frame-
works.

4.1 Seismic Wave Modeling

Simulation of seismic waves is interesting for
instance within the oil industry, where it is used to
investigate oil reservoir models. It is also a good
example of an application in which the physics often
suggests various simplifications. In coordinate free
form, we have the following model:

�
�2u→

�t2
= � � � + f

→
(t),

� = �(e), (5)

e = �u
→(g).

Here, � is the density, u
→ is the particle displacement,

f→ is an external force, � and e are the stress and
strain tensors respectively, � is the stiffness tensor
of order 4, and g is the geometric tensor of the
coordinates. The Lie derivative along a vector field
u
→ is denoted �u

→. The scalar field density � and the
stiffness tensor field � are given data that vary
within the physical domain, modeling the varying
geophysical properties of the rocks. A main advan-
tage of the coordinate free form of these equations
is that we may use a curvi-linear coordinate system
adapted to the folding of geological boundaries. This
may improve the numerical accuracy and reduce
the amount of computation needed. In the Sophus
architecture, the main program is written using the
coordinate free interface (see Fig. 6).

Fig. 6. Sample Sophus code. C++ functions corresponding to the
operators in Equation (5) form the core of the program.

The main program is then configured using vari-
ous submodules depending on the model at hand.
If, for instance, a simulation is to be carried out
around a bore hole with rotational symmetry, the
program is configured with a tensor module that
computes derivatives accordingly. The configuration
may also be used for varying the rock model class.
If the rock is considered isotropic, � takes a parti-
cularly simple form which depends only upon two
independent coefficients, to be compared with 21 in
the general case. At present, three different classes
of rock models are supported in different Sophus
modules. This Sophus application uses finite differ-
ences on a staggered grid.

The seismic simulations of Eq. (5) show that
coordinate free abstractions promote reuse when
simulating the same PDE in various situations.
We also comment on a situation where the math-
ematical model is refined even more. The demand
for a more precise elastic wave simulation in
reservoir zones makes it interesting to study a
poro-elastic model:

�11

�2u→

�t2
+ �12

�2U
→

�t2
= � � � + f

→
(t) + b��U

→

�t
�

�u→

�t�,
�12

�2u→

�t2
+ �22

�2U
→

�t2
= �s + f

→
(t) � b��U

→

�t
�

�u→

�t�,
� = �(e) + �(�), (6)

s = M(e) + R(�),

e = �u
→(g), � = � � U

→
.

This model couples the displacement vectors u
→ for

the solid and U
→

for the fluid. The model is described
in detail in Haveraaen et al. [10]. In this context,
we point out that even if the poro-elastic model
is considerably more complex, the coordinate free
abstractions of the original model (5) can be reused
to a high degree. We are just applying the same
operators in more complex expressions.

4.2 The Incompressible Navier-Stokes
Equations

A common model for many fluid motion simulations
is given by the incompressible Navier-Stokes equa-
tions. The equations may be expressed in a coordi-
nate free form as follows:

u→ t = � (u→ � �)u→ � �p + 	�u→ (7)

� � u→ = 0 (8)

Here, u→ is the (2D or 3D) velocity, p is the pressure,

292 K. Åhlander, M. Haveraaen and H. Munthe-Kaas

and 	 is the viscosity. For numerical computations,
we may choose another form of the equations. Fol-
lowing Henshaw and Kreiss [16], we derive an
elliptic constraint for p by letting � � act on Eq.
(7) and using Eq. (8). We obtain

�p = � � � (u→ � �)u→ (9)

A numerical simulation based upon a coordinate
free formulation may now use Eqs (7) and (9).
This example demonstrates some additional points
regarding coordinate free PDE software. In Eq. (7),
we observe not only the standard coordinate free
differentiation operators discussed earlier, but also
the operation (u→ � �)u→, a convective derivative. The
interface for coordinate free software may vary from
application to application, and a coordinate free PDE
framework should therefore, ideally, provide good
mechanisms for extensibility. Equation (9) provides
us with yet another fine point to notice. Even though
the right-hand side may be expressed using standard
coordinate free building blocks such as the diver-
gence, ��, and the Laplacian, �, it is difficult for
the framework to compute it efficiently. In 2D Car-
tesian coordinates, for instance, we may use Eq. (8)
together with the simple formulas for the differen-
tiation operators to simplify the right-hand side
significantly:

�p = � u2
x � 2vxuy � v2

y. (10)

When simulating the incompressible Navier–Stokes
equations in the Compose framework, which is
based on the coordinate free differentiations on
curvi-linear grids provided by Overture2, we found
it pragmatically motivated to develop dedicated equ-
ation objects for the Cartesian 2D formulation of
the equations (Fig. 7). If desirable, a corresponding
development for other coordinate systems (rotational
symmetry or 3D, for instance) could be included in
the framework. We also emphasize that we still
enjoy the coordinate free concepts of the curvi-
linear grids, illustrated in Figure 8. The lesson learnt
from this example is that even if a coordinate free
PDE framework should be based on pure coordinate
free operations, it should also be open for compro-
mises as exemplified above. A purely coordinate
free approach to solve Eqs (7) and (8) using finite
elements is also possible (see Grant et al. [11]).

2 Currently, research has been initiated to develop versions of
Compose which use other tools, Cogito, as a supporting layer [1].

Fig. 7. Sample Compose code. The right hand side of Eq. (10)
is computed. The formula is optimized for Cartesian 2D and the
derivates are computed coordinate free in the sense of curvi-
linear grids. The gridfunctions u and v belongs to the class
INSpressure, which inherits from SpaceEquation.

4.3 Comment on Various Framework
Architectures

The previous examples were presented mainly to
give examples of coordinate free frameworks used
in practice. It is also of interest to compare the
different framework designs used in Sophus (Section
4.1) and Compose (Section 4.2). Even though both
systems are developed in C++, their architectures
differ, particularly with respect to the treatment of
variation points.

The Sophus framework supports coordinate free
mechanisms on the tensor level. Using a technique
similar to parametrization using C++ templates, it
is possible to configure an application program at
link time, to adapt the program to different needs
(coordinate systems, parallel vs serial program ver-
sions, etc.) The program variations are thus modeled
at link time, with the advantage that any run-time
overhead is eliminated, and it is possible to use
modules which provide only a minimal interface.

Compose, on the other hand, uses Overture’s
coordinate free mechanisms for curvi-linear, com-
posite, grids. The Compose environment is inter-
active. It is possible to construct Compose appli-
cations where both equations and numerical methods
are varied in run-time, using inheritance and
dynamic binding. Compose also offers some dedi-
cated debugging facilities [17]. An interactive
environment of this kind may be useful when
developing and testing new mathematical models.

The choice between compile-time and run-time
variation points is not clear-cut, since both
approaches have their benefits. In this context it is
interesting to observe the possibilities of generic
programming, see for instance, Czarnecki and
Eisenecker [18]. Using these techniques, it should

293On OO Frameworks and Coordinate Free Formulations of PDEs

Fig. 8. A numerically simulated flow in a chamber. Fluid flows into the chamber from the left and out via the two outflows. The
geometry is modeled with four curvi-linear grids.

actually be possible to offer both possibilities in the
same framework.

5. Summary

Coordinate free abstractions for OO PDE frame-
works are abstractions that hide the underlying rep-
resentation of coordinate systems. By expressing
a numerical PDE simulation using coordinate free
abstractions, the simulation may transparently use
different coordinate systems, which often is called
for due to different mathematical or physical models.
It is therefore desirable that PDE frameworks pro-
vide coordinate free tools. We have identified two
different ways to support coordinate free abstrac-
tions. First, they may be supported at the ‘level of
the manifold’, embedded in a Cartesian space, and
where differentiation operators are implemented
using an extrinsic view of the manifold. This is
suitable for curvi-linear grids which can be used to
construct composite grids. Secondly, coordinate free
tools may be based at the ‘tensor level’, where a
pure intrinsic view is taken of the manifold. This
is advantageous in order to exploit properties such
as rotational symmetry, and it can also be applied
to curvi-linear grids.

We have exemplified the use of coordinate free
abstractions by two applications; seismic modeling
using Sophus and fluid simulations using
Compose/Overture. The Sophus architecture allows
the same main program to be varied at link time.
The seismic application provides variation of differ-
ent coordinate systems and several other orthogonal
variations, serial vs parallel execution, different
classes of rock models, etc. The Compose frame-
work enjoys coordinate free abstractions on com-
posite curvi-linear grids using the Overture library,
which allows run-time variation using dynamic

binding. Both compile-time and run-time variation
possibilities have their benefits.

In the context of PDE simulation frameworks,
there are several important variation points, such as
numerical accuracy, parallel or serial versions etc.
Focussing on coordinate free abstractions, some
obvious variation points are different coordinate sys-
tem, different mappings from the computational
domain to the physical domain, the dimension of
the physical domain, and the very choice of which
coordinate free differentiation operators should be
supported. Finer variation points include whether
derivatives of the mappings should be computed in
advance and stored in memory or computed on
request, and whether they should be numerically
approximated or computed analytically (if possible).
As mentioned earlier, it is unlikely that one single
PDE framework will suit all applications. Different
frameworks will continue to provide different points
of variation, but we believe variation of coordinates
to be a central issue.

Our examples have primarily used finite differ-
ences to highlight the advantages of coordinate free
PDE abstractions. However, we stress that the under-
lying principles belong to the continuous abstraction
level. Coordinate free abstractions are therefore rel-
evant also when other discretization techniques are
used.

Acknowledgement

Research funded via a grant from the Norwegian research
council, NFR-project 123585/410.

References

1. Thuné, M., Åhlander, K., Ljungberg, M. et al. (2001)
Object-oriented modeling of parallel PDE solvers. In:

294 K. Åhlander, M. Haveraaen and H. Munthe-Kaas

Boisvert, R., Tang, P. (Editors), The Architecture of
Scientific Software, Kluwer Academic, Boston, 159–
174

2. Bruaset, A.M., Langtangen, H.P. (1997) A comprehen-
sive set of tools for solving partial differential equa-
tions; Diffpack. In: Dæhlen, M., Tveito, A. (Editors),
Numerical Methods and Software Tools in Industrial
Mathematics, Birkhäuser, Boston, 61–90

3. Brown, D., Henshaw, W., Quinlan, D. (1999) Over-
ture: An object-oriented framework for solving partial
differential equations on overlapping grids. In: Hender-
son, M. E., Anderson, C. R., Lyons, S. L. (Editors),
Object-oriented Methods for Interoperable Scientific
and Engineering Computing. SIAM, Philadelphia

4. Cummings, J.C., Crotinger, J.A., Haney, S.W. et al.
(1999) Rapid application development and enhanced
code interoperability using the POOMA framework.
In: Henderson, M. E., Anderson, C. R., Lyons, S. L.
(Editors), Object-oriented Methods for Interoperable
Scientific and Engineering Computing. SIAM, Philad-
elphia

5. Houstis, E.N., Rice, J.R., Weerawarana, S. et al. (1998)
PELLPACK: A problem-solving environment for
PDE-based applications on multicomputer platforms.
ACM Transactions on Mathematical Software, 24(1),
30–73

6. Mattsson, M. (1996) Object-oriented frameworks, a
survey of methodological issues. Technical Report
CODEN:LUTEDX/(TECS-3066)/1-130/(1996), Depart-
ment of Computer Science, Lund University

7. Åhlander, K., Haveraaen, M., Munthe-Kaas, H. (2001)
On the role of mathematical abstractions for scientific
computing. In: Boisvert, R., Tang, P. (Editors), The
Architecture of Scientific Software, Kluwer Academic,
Boston, 145–158

8. Iserles, A., Munthe-Kaas, H., Nørsett, S.P., Zanna, A.

(2000) Lie-group methods. Acta Numerica, 9, 215–
365

9. Munthe-Kaas, H. (1999) High order Runge–Kutta
methods on manifolds. Applied Numerical Mathemat-
ics, 29, 115–127

10. Haveraaen, M., Friis, H.A., Johansen, T.A. (1999)
Formal software engineering for computational mode-
ling. Nordic Journal of Computing, 6(3), 241–270

11. Grant, P., Haveraaen, M., Webster, M. (2000) Coordi-
nate free programming of computational fluid dynam-
ics problems. Scientific Programming, 8(4), 211–230

12. Schutz, B. (1980) Geometrical Methods of Mathemat-
ical Physics. Cambridge University Press

13. Rumbaugh, J., Jacobson, I., Booch, G. (1999) The
Unified Modeling Language Reference Manual.
Addison Wesley Longman, Reading, MA

14. Åhlander, K. (1999) An extendable PDE solver with
reusable components. In: Kudriavtsev, V.V., Kleijn,
C.R. (Editors), Computational Technologies for fluid/
thermal/structural/chemical systems with industrial
applications, volume PVP-Vol. 397–1, 39–46. ASME.

15. Åhlander, K. (1999) An Object-Oriented Framework
for PDE Solvers. PhD thesis, Uppsala University,
Dept. of Scientific Computing, Uppsala, Sweden

16. Henshaw, W., Kreiss, J.O. (1995) Analysis of a
difference approximation for the incompressible
Navier-Stokes equations. Technical Report LA-UR-
95-3536, Los Alamos National Laboratory, Los
Alamos, NM

17. Åhlander, K. (2001) Verifying extensions of OO
frameworks: An example from scientific computing.
In: Sanchez, B. et al. (Editors), Information systems
development, vol 2, pp 275–378

18. Czarnecki, K., Eisenecker, U. (2000) Synthesizing
objects. Concurrency: Practice and Experience, 12,
1347–1377

