
Structured testing in Sophus

Appeared in Eivind Coward (ed.): Norsk Informatikkonferanse 2005,
Tapir, Trondheim Norway 2005, pp. 43--54.
http://www.nik.no/2005/

∗

Magne Haveraaen Enida Brkic
Institutt for informatikk, Universitetet i Bergen

Abstract
Testing is very important for the validation of software, but tests are all
too often developed on an ad hoc basis. Here we show a more systematic
approach with a basis in structured specifications. The approach will be
demonstrated on Sophus, a medium-sized software library developed using
(informal) algebraic specifications.

1 Introduction
Testing is one of the oldest and most used approaches for the validation of software.
In spite of its importance, it is often performed as an add-on to the development of the
software. In some approaches, e.g., extreme programming [Bec99], testing, has been
given a prominent role. Still, even in those approaches, tests are normally created in an
ad hoc fashion.

Here we investigate the systematic exploitation of specifications for testing,
specifically utilising algebraic specifications of a library as a means of systematically
structuring and re-using tests for the library components. We will demonstrate this on
selected specifications and implementations from the Sophus library, see figure 1.

Algebraic specifications [BM03] represent a high-level, abstract approach to
specifications, completely void of implementation considerations. The idea of testing
based on algebraic specifications is not a new one, see e.g., [GMH81, Gau95, Mac00].
We follow the technique of [GMH81], extending it to structured specifications.

Sophus [HFJ99] is a medium-sized C++ software library developed for solving
coordinate-free partial differential equations. The aspect of the library that is relevant to
us is the fact that it was developed using extensive, but informal, algebraic specifications.
The specifications are small and build upon each other, and every implementation is
related to several specifications. We want to exploit this structure in the development
of tests, so that we may re-use the same tests for many different implementations.

This paper is organised as follows. Next we describe the structure of the Sophus
library. Then we look closer at the notion of specification and give some sample Sophus
specifications. Section four discusses the notion of implementation and sketches some
Sophus implementations. Section five is about testing the Sophus library. And finally we
sum up our approach and conclude.

∗This presentation builds on Enida Brkic’ master’s thesis [Brk05].

Figure 1: The arrows relate implementations (shaded dark) to specifications (lightly
tinted) in the Sophus library. A specification extends another specification (punctured
arrowhead) or uses another specification (normal arrowhead). An implementation uses
another implementation or satisfies a specification (and all its subspecifications).

2 The structure of the Sophus Library
The Sophus library was developed with a focus on making reusable components. In order
to do this, algebraic specifications were used as a domain analysis and engineering tool
[Hav00], and many small specifications were written to capture the central concepts.

Implementations were also targeted to be as general as possible, trying to establish a
high level of reuse even within the library itself.

One effect of this is that each specification may relate to several implementations,
and that each implementation relates to several specifications. Figure 1 shows a small
part of this structure. The specification CartPoint uses the specification CartShape,
while ContShape extends the CartShape specification. The implementation BnShape

satisfies the ContShape specification, and hence its subspecification CartShape. The
implementation BnPoint uses the BnShape implementation, while it satisfies the
ContPoint specification, and hence the subspecification CartPoint.

The fragment of Sophus shown defines three main kinds of concepts:

• shapes: descriptions of index sets,

• points: elements of an index set of a given shape,

• containers and scalar-fields: indexed structures with given shapes.

This setup is to ensure the correct typing when a scalar-field is indexed by a point: only
indices (points) that are relevant for the container will be applied. So the indexing operator
has declaration

[] : C〈E〉, Point → E, shape(c)==shape(p) guards c[p]

where C〈E〉 is a (template) container/scalar-field type with elements of type E, and Point

is a point type. The guard requires the condition that the shape (allowed indices) for the

scalar-field and the shape of the point (the actual index) must match for the indexing to
be valid.

The shapes are Cartesian, as in being Cartesian products of sets. So each point will
have several, independent values, i.e., the points themselves are small arrays indexed by
directions. The dimension of a shape tells how many directions the corresponding points
have. The shape encodes the legal index bounds for each direction of a point. The index
sets given by a shape may be the often used intervals of integers, but they may also
define continuous index sets, as needed for the application domain of partial differential
equations.

Each of the abstractions have additional properties beyond that of just being
indices and arrays. We will illustrate this by a simplified (and slightly adapted)
presentation of a small part of Sophus. For this reason, not all specifications we
present are part of figure 1. We will sketch specifications CartShape, BoundedShape,
CartPoint, UnboundedPoint and BoundedPoint, and implementations RnShape,
RnPoint, MeshShape and MeshPoint. This will be sufficient to show the reuse of the
same (sub)specification in several contexts, and that library implementations relate to
more than one specification unit. The goal is to exploit this structure when building tests.

3 Specification
Here we present some standard theory about algebraic specifications, see for example
[LEW96]. Then we show selected parts of Sophus specifications.

Specification theory
Given a declaration of sorts (also known as types or classes) and operations (also known
as functions or methods). Then we may declare variables of the sorts, and build terms
(expressions) from the variables and the declared operations.

An equational axiom is the statement that two such expressions should be equal. They
are typically written as an equation, with an expression on each side of an equality sign.
Here we use the C/C++/Java == symbol as our equality sign. We assume that the only
declared variables are the variables visible in the axiom, i.e., the free variables of the
axiom.

To check that an equation holds, we must provide a model for the sorts and operations.
In computer science speak, this means we need to provide an implementation. The
implementation will for each sort define a data-structure, a place-holder for the values,
and for each operation an algorithm. We also need to give the variables values. This is
called an assignment, and can be thought of as putting data in the data structure for each
variable. It is then possible to evaluate the expressions in an axiom, and compare them
to check that they are equal. Denote the model by M, the variables by V , the axiom by
ax and the assignment by a : V → M, seeing assignments as a function that gives each
variable a value from the model. We can then write that axiom ax holds in the model M
for the assignment a by

M |=a ax. (1)

If any of the operations are guarded, only assignments which are accepted by the guard
can be used.

A model M satisfies an axiom ax, if ax holds in M for all possible assignments a, or,
in a mathematical notation,

M |= ax ⇔ ∀(a : V → M) : M |=a ax. (2)

A specification is a collection of axioms, and a model M satisfies a specification if all of
the axioms are satisfied.

Some shape and point specifications from Sophus
Shape specifications
We will focus on two shape specifications, CartShape which is general and applies to any
finite-dimensional shape, and BoundedShape which is for bounded, finite-dimensional
shapes.

The CartShape specification establishes the basic notion of a Cartesian shape. A
Cartesian shape has a finite set of directions, the number of directions is the dimension of
the shape. Dimensions and directions are given as integers (natural numbers).

specification CartShape〈sorts Shape〉
// Cartesian index set, each index has n directions

operations
setDimensions : int → Shape, n≥0 guards setDimensions(n)

// set the dimension, i.e., the number of directions

getDimensions : Shape → int

// get the dimension, i.e., the number of directions

legalDirection : Shape, int → bool

// check that a direction index is within bounds

axioms
getDimensions(setDimensions(n)) == n

legalDirection(s,d) == (0≤d and d<getDimensions(s))

This is a loose specification with respect to Shape. We have not given enough axioms
to pin down the meaning of the sort, in fact we have not provided enough operations to
make it possible to pin this down. This looseness (and incompleteness) is deliberate. It
gives the specification a higher degree of reusability.

The BoundedShape specification is more specific than CartShape, as it in addition to
the finite Cartesian assumption defines that the extent of each dimension is bounded.

specification BoundedShape〈sorts Shape, R〉
// Bounded Cartesian index set

includes CartShape〈Shape〉
operations
setBounds : Shape, int, R, R → Shape,

legalDirection(s,d) and rl≤ru guards setBounds(s,d,rl,ru)

getLower : Shape, int → R, // lower bound for a direction

legalDirection(s,d) guards getLower(s,d)

getUpper : Shape, int → R, // upper bound for a direction

legalDirection(s,d) guards getUpper(s,d)

axioms
getLower(setBounds(s,d,rl,ru),d) == rl

k6=d ⇒ getLower(setBounds(s,k,rl,ru),d) == getLower(s,d)

getUpper(setBounds(s,d,rl,ru),d) == ru

k6=d ⇒ getUpper(setBounds(s,k,rl,ru),d) == getUpper(s,d)

The get-functions are supposed to return the corresponding values that have been set, and
the set operation is supposed to only change the value of one direction. We make the
obvious restriction that the upper bound should be larger than the lower bound in the
guard to the setBounds operation.

Point specifications
The members of the index set defined by a given shape are called points. Cartesian points
have an index value (of sort R) for every direction defined by its shape. The operation
[] returns this index value. These are used to index the actual scalar field data, and to

move around the data, movements given by the + operation.
specification CartPoint〈sorts Shape, Point, R〉
// Cartesian point set, each point is a Cartesian shape

includes CartShape〈Shape〉
operations
setShape : Shape → Point

getShape : Point → Shape

getDimensions : Point → int

legalDirection : Point, int → bool

setDirection : Point, int, real → point,

legalDirection(p,d) guards setDirection(p,d,r)

[] : Point, int → R, legalDirection(p,d) guards p[d]

+ : Point, Point → Point

axioms
getShape(setShape(s)) == s

getDimensions(p) == getDimensions(getShape(p))

legalDirection(p,d) == legalDirection(getShape(p),d)

setDirection(p,d,r)[d] == r

k6=d ⇒ setDirection(p,k,r)[d] == p[d]

p1+(p2+p3) == (p1+p2)+p3 // associativity

implies
legalDirection(p,d) == (0≤d and d<getDimensions(p))

The implies clause is derived from the meaning of legalDirection on the shape.
A Cartesian point specialises to an unbounded point type, where we know that addition

on the parameter type is to be consistent with addition on the point type.
specification UnboundedPoint〈sorts Shape, Point, R〉
includes CartShape〈Shape〉, CartPoint〈Shape,Point,R〉
axioms
(p1+p2)[d] = p1[d] + p2[d] // lifted + : R, R → R

In the bounded version we know more about the point values, but we do not have a general
specification of addition, as there is no general way to further restrict point addition for
arbitrary bounds.

specification BoundedPoint〈sorts Shape, Point, R〉
includes CartShape, CartPoint〈R〉, BoundedShape〈R〉
axioms
getLower(getShape(p),d) ≤ p[d]

p[d] ≤ getUpper(getShape(p),d)

Strictly speaking these two axioms are not equations, just positive assertions on the data.

4 Implementation
The implementation theory is based on [Mor73, LZ74], which provides the basic insight
into why class-based programming is so successful. Important aspects of this insight
seems largely ignored in modern computer literature, but is slowly creeping back into
consciousness.

Implementation theory
Given a declaration of sorts (also known as types or classes) and operations. An
implementation provides a data structure for each of the sorts, and an algorithm for each
of the operations.

The sort then derives its meaning from the values we may insert into the data structure.
But we may not (want to) be using all possible data values. There may be natural limits
within the data, e.g., an integer representing months will only have values between 1 and
12. Or we may have declared some redundancy, e.g., setting aside a variable to track the
size of a linked list so we do not have to traverse it whenever we need to know how long
it is. Such restrictions are captured by the data invariant, a guard which states what data
values are accepted into the data structure. Only data values that makes the data invariant
hold are accepted in the data structure. We assume that every implementation alongside
the data structure for a sort also provides a data invariant checking operation DI.

Another question which arises is when we should consider two values for a data
structure to be the same. Intuitively we may think that the values must be identical, but
this is not always the case. We normally consider the rational numbers 1

2 = 3
6 , even though

the data set (1,2) is different from the data set (3,6). To overcome this, an implementation
should define the == operator (or equals method in Java) for every sort. This is standard
practice in C++. In Java/C++ the compiler in any case provides one for you unless you
define it yourself. This equality operation is the one used to check the equations.

For an implementation to be consistent, it needs to satisfy two basic requirements.

• Every algorithm must preserve the data invariants: if the input data satisfies the data
invariant, so must the output data.

• Every algorithm must preserve equality: given two sets of arguments for an
algorithm, such that every corresponding pair of input data structure values
(possibly different data sets) being equal according to the equality operator, then the
two (possibly different) resulting data structure values produced by the algorithm
must be equal according to the equality operator.

The first requirement makes certain every algorithm takes legal data to legal data. The
second requirement maintains the “illusion” of equality according to the user-defined
equality operator. The former property may be seen as a guard on the data structure.
The latter property may be formalised as a set of conditional equational axioms, one for
each operation being declared.

This approach eliminates the oracle problem of [Gau95], as we now are treating the
equality operator as any other operation of the specification with regards to its correctness
and implementability.

Some shape and point implementations from Sophus
We will first sketch the implementation of the unbounded n-dimensional real number
shape.

• RnShape is a shape type with only the number of dimensions in its data structure.
The data invariant asserts that this number is at least 0, and the equality operator
on RnShape checks that the number of dimensions are the same. setDimensions
sets this value, getDimensions reads it, and legalDirection(s,d) checks that
0≤getDimensions(s), exactly as in the CartShape axioms given that RnShape
is the Shape parameter.

• The related points, RnPoint, for an n-dimensional RnShape, is a list of n real
values, spanning the n-dimensional Euclidean space.

We then sketch the implementation of the bounded mesh-type. These represent a
Cartesian product of integer intervals.

• MeshShape is a n-dimensional shape for integer intervals. Its data structure contains
the number of dimensions n:int and two arrays L,U, each containing n integers.
The data invariant asserts that the number n is at least 0, and that for all i:int,
0≤i<n, L[i]≤U[i]. The equality operator on MeshShape checks that the number
of dimensions are the same and that the corresponding elements of the correspond-
ing arrays of the two shapes contain the same values. setDimensions(n) sets the
attribute n and initialises all array elements to 0. getDimensions reads the attribute
n, and legalDirection(s,d) checks that 0≤getDimensions(s). The function
setBounds sets the corresponding elements of the arrays L and U, while getLower
and getUpper access the corresponding elements of L and U, respectively. This
should ensure BoundedShape〈MeshShape,int,≤:int,int→ int〉.

• An n-dimensional MeshPoint is a list of n integers, for each direction bound by the
corresponding upper and lower bounds of the associated MeshShape.

Note that RnShape and MeshShape represent different abstractions, Euclidean continuous
space versus lists of integer intervals, and that their data structures are significantly
dissimilar, a natural number versus a natural number and two lists of integers with some
constraints. Yet they are both to satisfy the CartShape (sub)specification.

5 Testing
The theory on testing we present is loosely based on [Gau95], but extended in the direction
of [GMH81] to also handle other specification styles than conditional equations.

Testing theory
Testing is a form of validation where we run the algorithms on selected data sets in order
to increase our belief in their correctness. The decision procedure that decides if a test is
successful is called a test oracle.

We have three different correctness criteria for our algorithms.

• Preservation of the data invariant: every operation can check the data invariant on
the return value.
This is sufficient to guarantee the preservation of the data invariant, provided we are
certain only the algorithms of our model are allowed to modify the data in a data

structure. Checking every algorithm’s return value will then be the earliest possible
point of detecting a breach of the data invariant1 as pointed out by [Mor73].

• Preservation of equality: whenever we have two alternative sets of argument data
to an algorithm, we need to verify that the algorithm returns “equal” data if the data
sets are “equal”2.

• Checking the axioms: whenever we have a set of data values corresponding to the
free variables of an axiom, we should check that the axiom holds. Note that even
though this is an absolute criterion of correctness, an error may be in any one of the
operations in the axiom, even in the equality operator itself.

The first two of these test criteria relate to the consistency of the implementation. Only
the last criterion is related to the specification per se. Also note that the first criterion
does not need any specific data, the check can be performed whenever an algorithm is
executed. The latter two criteria needs us to device data for the checks.

As noted in the section on implementations, the second correctness criterion may be
encoded as a collection of conditional, equational axioms. In the following we will treat
these “equality preservation axioms” together with the “normal” axioms, avoiding the
need to discuss them specifically in any way. We also check that our “equality” is an
equivalence by adding these equations to the “normal” axioms.

From specification theory we know that an implementation M is correct with respect
to (a combined user-defined and equality preservation) specification if it satisfies all the
axioms. The implementation M satisfies an axiom ax if it holds for all assignments
a : V → M of (data invariant and declared guarded) assignments to the data structures,
M |=a ax. But normally the set A(ax,M) = {a : V → M | V the free variables in ax} of
possible assignments is too large. It will not be possible to check that the model holds for
every assignment.

In testing we then choose some smaller set T ⊆ A(ax,M) so that we get a manageable
amount of checks to perform.

M |=T ax ⇔ ∀a ∈ T : M |=a ax. (3)

Such a set T is called a test set. A test set is exhaustive if it guarantees correctness.
Normally we will not have an exhaustive test set. But a test reduction hypothesis allows us
to reduce the size of the test set, yet guarantee correctness relative to the hypothesis. The
more powerful the reduction hypothesis, the smaller data set we can use for exhaustive
testing.

One test reduction hypothesis is the random value selection hypothesis [DN84]. The
idea here is to randomly select values from the entire domain A(ax,M). Every such value
has a certain probability of discovering an error. The more values selected the better, up
until a certain threshold, where the probability of detecting an hitherto undetected error
rapidly decreases. Since the selection is random, there is no bias in the data towards
ignoring specific errors in the implementation. The random selection function need not

1If it is possible to modify data by other means, we must either do a data invariant check when data has
been modified by such means, or check the data invariant for the input arguments as well. An algorithm
is not required to satisfy any specific property if it is supplied data not secured by the guards, and a data
invariant breach would also invalidate the premise for the algorithm.

2Note that this is a relative relation between the equality operator and the algorithm, as there is no formal
definition that makes one of them more fundamentally correct than the other.

be a uniform distribution, but could be distributed according to normal usage patterns,
towards especially safety critical parts, etc.

Another class of test reduction hypothesis are the domain partitioning hypothesis.
These try to split the test universe A(ax,M) into (possibly overlapping) subsets. Then a
few representative test values may be chosen within each partition. The idea being that
these test values will detect any problem within the partition they belong to.

Partitioning can be combined with random test value selection. Then we choose a
random selection of values in each partitioning. The chosen values will then not be
distributed evenly across the whole domain, but rather in each subdomain.

A common domain partitioning hypothesis is the discontinuity hypothesis. The idea
being that in subdomains where an operation behaves “continuously” it will behave in
the same manner for any value, but at the borders of discontinuity we risk irregular
changes in behaviour. So we need to select “normal” test values and “border” test values
to best discover any errors in the implementation. There are two main approaches to
generate such partitionings: specification based and implementation based. Thinking
of the implementation as a box, these are also referred to as black box and clear box,
respectively, referring to whether we can look inside to the implemented code or not.

In the following we will look at specification based (black box) testing. This implies
that we look at the specification to find the discontinuities.

If this partitioning gives specific terms which replace some variables in an axiom, then
we call the axioms specialised with these terms for test cases. If all values for a model are
generated, i.e., there exists syntactic expressions representing each value, then we may
reduce all testing to test cases [Gau95], avoiding the need to administer external data.

Some tests for the Sophus Library
We now need to derive test oracles and test data partitionings from the loose (Sophus)
specifications. Since our starting point is loose specifications, we are in general unable
to pin down any concrete test values. But any conditional in the specification (guard or
axiom) normally indicates a discontinuity of some sort. We will then (randomly) choose
a single value at each such border, and a single value in the continuous parts.

Building reusable test oracles
We take every axiom in a specification and turn it into a reusable test oracle operation by
the following steps.

1. the operations have the free variables of the axiom as parameters

2. the template arguments of the specification become template arguments of the
operation, if they appear as sorts for the free variables of the axiom

3. the body of the operation is the axiom itself

Following this procedure3, we turn the two CartShape axioms into the following two test
oracles.

bool CartShapeAxiom1(int n)

{ return getDimensions(setDimensions(n)) == n; }
template〈sorts Shape〉

3At the moment we have no automatic tool for this, but work has started to provide a tool taking formal
specifications to test oracle operations.

bool CartShapeAxiom2(Shape s, int d)

{ return legalDirection(s,d) == (0≤d and d<getDimensions(s)); }

All implementation satisfying CartShape will, for any data assignment to the variables,
pass the tests above.

For the Cartesian point classes, we generate test oracles similarly, e.g., for the 6th
axiom which gives the associativity of +.

template〈sorts Point〉
bool CartPointAxiom6(Point p1, p2, p3)

{ return p1+(p2+p3) == (p1+p2)+p3; }

An interesting observations, which is possible to explore in some cases, is that
CartShapeAxiom1 has the same form as the (only) implication given for CartPoint.
We may then actually reuse this shape oracle in the point context.

The test oracle operations we have showed so far are valid for all shapes / points.
A test oracle created from, e.g., a BoundedShape axiom checking for the correctness of
bounds, is not relevant for RnShape since this sort has no bound concept.

Some test data cases
We will here apply the discontinuity domain splitting hypothesis to a few selected axioms.
Our first example is CartShapeAxiom1. The setDimensions operation requires that the
parameter is at least 0. This gives a natural splitting into two test cases: the value 0 and
some (arbitrary) value greater than 0. So we reduce the test oracle into two parameterless
test-cases.

bool CartShapeAxiom1Case0() { return CartShapeAxiom1(0); }
bool CartShapeAxiom1Case1() { return CartShapeAxiom1(4); }

The number 4 is a random value greater than 0. These two tests oracles are all we need
to validate any shape implementation given the test hypothesis we have chosen.

A similar analysis for CartShapeAxiom2 gives us the following 6 test cases.
bool CartShapeAxiom2Case1()

{ return CartShapeAxiom2(setDimensions(7),0); }
bool CartShapeAxiom2Case2()

{ return CartShapeAxiom2(setDimensions(5),4); }
bool CartShapeAxiom2Case3()

{ return CartShapeAxiom2(setDimensions(9),2); }
template〈sorts Shape〉
bool CartShapeAxiom2Case4(Shape s) 0<getDimensions(s) guards
{ return CartShapeAxiom2(s,0); }
template〈sorts Shape〉
bool CartShapeAxiom2Case5(Shape s) 0<getDimensions(s) guards
{ return CartShapeAxiom2(s,getShape(s)-1); }
template〈sorts Shape〉
bool CartShapeAxiom2Case6(Shape s, int d)

0<d and d<getDimensions(s)-1 guards
{ return CartShapeAxiom2(s,d); }

The 0’th test case, with the number of dimensions equal 0, does not exist since there are
no direction values d such that 0≤d<0. Note how the latter test cases put restrictions on
the test sets based on what already has been tested. Also see that we are unable to provide
any further splitting of the test cases, as the information we have about discontinuities

from declarations do not allow this. Further, the operations we have in CartShape do not
allow us to construct any test values for the latter three test cases.

Some test data sets
Constructing the remaining test data sets for CartShapeAxiom2 requires us to know
which implementation to test.

Given RnShape, we observe that the only constructor for shape data is
setDimensions. Then the first three test cases for CartShapeAxiom2 covers all rele-
vant cases for the discontinuity domain splitting hypothesis.

For MeshShape we are able to construct further test data. Using the same hypothesis
we first create a test data set with 3 test data values. These can be used for
CartShapeAxiom1Case4 and CartShapeAxiom1Case5.

setBounds(setBounds(setDimensions(2),0,3,3),1,-5,-5);

setBounds(setBounds(setBounds(setDimensions(3),0,3,7),1,-5,7),2,3,7);

setBounds(setBounds(setDimensions(2),0,3,7),1,-5,7);

For CartShapeAxiom1Case6 we need data sets for dimensions n ≥ 3, as n = 3
dimensions is the smallest size we can use in order to satisfy the guard 0<d<n-1. Note
how these sets need to cover the cases where rl==ru and rl<ru, and we need this when
all directions in the shape belong to the first (==) of these two cases, when the directions
represent a mix of cases, and where all directions represent the latter (<) case. The
hypothesis does not give us any hints about this being better (or worse) than reusing the
same data values where applicable.

Even though the values used as inputs to the tests only can be constructed from the
implementation, the discontinuities defining the test cases arise from the analysis of the
specification, maintaining the black box nature of this testing discipline.

6 Conclusion
We have briefly presented theories for algebraic specification, implementation and
testing, and showed how these apply to a fragment of the Sophus library. The
approach systematically derived reusable test oracles from axioms, and the process was
supplemented with test case and test data generation related to the specifications. This
approach is now being used for the systematic validation of Sophus, and tool support for
this is under way.

This validation exploits the specifications already written as part of the development
of Sophus. It also exploits the structure of these specifications, allowing the reuse of tests
for all implementations that satisfy the same (sub)specification. Such reuse of test cases
across a wide range of implementations does not seem to have been reported earlier.

The formulation we have chosen for test satisfaction, see equation 3, seems to easily
extend to any institution where the formulas have variables, whether free or explicitly
quantified. This improves over earlier attempts to integrate testing in the institution
framework [LGA96, DW00], although it remains to be seen whether there exists a general
characterisation of institutions with variables.

References
[Bec99] Kent Beck. Extreme programming: A discipline of software development.

In Oscar Nierstrasz and M. Lemoine, editors, ESEC / SIGSOFT FSE, volume
1687 of Lecture Notes in Computer Science, page 1. Springer, 1999.

[BM03] Michel Bidoit and Peter D. Mosses, editors. CASL Casl User Manual -
Introduction to Using the Common Algebraic Specification Language, volume
2900 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

[Brk05] Enida Brkic. Systematic specification-based testing of coordinate-free
numerics. Master’s thesis, Universitetet i Bergen, P.O.Box 7800, N–5020
Bergen, Norway, Spring 2005.

[DN84] Joe W. Duran and Simeon C. Ntafos. An evaluation of random testing. IEEE
Trans. Software Eng., 10(4):438–444, 1984.

[DW00] M. Doche and V. Wiels. Extended institutions for testing. In T. Rus, editor,
Algebraic Methodology and Software Technology, volume 1816 of Lecture
Notes in Computer Science, pages 514–528. Springer Verlag, 2000.

[Gau95] Marie-Claude Gaudel. Testing can be formal, too. In Peter D. Mosses, Mogens
Nielsen, and Michael I. Schwartzbach, editors, TAPSOFT, volume 915 of
Lecture Notes in Computer Science, pages 82–96. Springer, 1995.

[GMH81] John D. Gannon, Paul R. McMullin, and Richard G. Hamlet. Data-abstraction
implementation, specification, and testing. ACM Trans. Program. Lang. Syst.,
3(3):211–223, 1981.

[Hav00] Magne Haveraaen. Case study on algebraic software methodologies for
scientific computing. Scientific Programming, 8(4):261–273, 2000.

[HFJ99] Magne Haveraaen, Helmer André Friis, and Tor Arne Johansen. Formal
software engineering for computational modelling. Nordic Journal of
Computing, 6(3):241–270, 1999.

[LEW96] J. Loeckx, H.-D. Ehrich, and B. Wolf. Specification of Abstract Data Types.
Wiley, 1996.

[LGA96] P. Le Gall and A. Arnould. Formal specification and testing: correctness and
oracle. In Magne Haveraaen, Olaf Owe, and Ole-Johan Dahl, editors, Recent
Trends in Algebraic Development Techniques, volume 1130 of Lecture Notes
in Computer Science. Springer Verlag, 1996.

[LZ74] Barbara Liskov and Stephen Zilles. Programming with abstract data types. In
Proceedings of the ACM SIGPLAN symposium on Very high level languages,
pages 50–59, 1974.

[Mac00] Patrı́cia D.L. Machado. Testing from Structured Algebraic Specifications: The
Oracle Problem. PhD thesis, University of Edinburgh, 2000.

[Mor73] J.H. Morris. Types are not sets. In Proceedings of the ACM Symposium on the
Principles of Programming Lanugages, pages 120–124, October 1973.

